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ABSTRACT: This study deals with the motion of a gas bubble develop- 
ing under the influence o'f surface-tension forces in an imponderable 
viscous liquid with a temperature gradient. A theory of steady-state 
motion of a bubble in a field with constant temperature gradient is 
given for the case of small Reynolds numbers. Experimental resutts 
that show qualitative agreement with the theory are presented. * 

In an unbounded imponderable viscous liquid let there be a gas 
bubble of radius r0. We shalt consider the motion of a bubble so 
sinai1 that inertial forces can be neglected as compared with viscous 
forces. In a nonuniformly heated liquid, as a result of the tempera- 
ture dependence of the suxface tension, forces develop under whose 
influence the bubble may move. 

We shall consider the steady motion of a bubble in a liquid 
medium with constant temperature gradient. It is known [1] that in 
this case in the bubble at rest the temperature gradient wilI also be 
constant. We shall assume that when the bubble moves the temper- 
attire gradient inside it preserves a constant value. We shall also 
neglect the dependence of viscosity on temperature. 

At small Reynolds numbers the equations of motion of an incom- 
pressible viscous liquid have the form 

grad p = ~lhV, div v = 0. (1) 

We shall take a coordinate system such that the temperature 
gradient is directed along the z axis. Let the bubble move with 
constant velocity V along the z axis, which is obvious from con- 
siderations of symmetry. We pass to a coordinate system tied to the 
center of the bubble and consider the problem in spherical coordinates. 
In this case, in the usual notation, Eqs. (1), with allowance for 
symmetry about the z axis (v~o = 0), have the form 
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*Editorial note. Before publication the authors notified the editors 
that they had recently become aware of another paper on the same 
theme: "The motion of bubbles in a vertical temperature gradient, " 
by N. O. Young, L. S. Goldstein, and M. J. Block, J. of Fluid Mech., 
vol. 6, p. 3, 1959. However, for technical reasons it was not pos- 
sibie for the editors to accede to the authors' request to hold over the 
paper to permit comparison of the results. 
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Assuming that the gas inside the bubble is an incompressible 
viscous fluid, we can write for its motion, equations analogous to 

(2). We shall, moreover, denote all the quantities relating to the 
gas by a prime. The solution of these equations must satisfy the 

following boundary conditions: 

when 
r - - ~  o o  

U r = --  V cos 0, U o = V sin 0, P = P0, (3) 

when r ~ r 0 U r =  U r '=O,  U o ~  Uo', 
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Here o is the surface tension. In view of the above assumption 
about the constancy of dT/dz inside the bubble, the reIation between 

o and 0 has the form 

/ Oa " , / d T \  
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As in [2], we seek the solution of the problem in the form 
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U r' = (A" -F B 'r2) cos 0, 

U d ---~ - -  (A' H- 2 B'r2) sin 0, 

p" ~- D" ~ ~l'iOB'r cos 0. (6) 

The constants and velocity V are found from the boundary con- 

ditions (3), (4), with allowance for (5). 
As a result of computations, for the velocity of the bubble we get 
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Since 0o/OT < 0, i t  follows that the bubble velocity is directed 
in the sense of increase in temperature. Usually O' << ~, and Eq. (7) 
can be written approximately in the form 

. r o t  ~ '~  dT 
= . -  ~ L T f J  -a-  , (8) 

In '~he case of an air bubble in water we have 

0 = 0.01g/cm �9 sec, 0u/0T = -0 .15e rg /cm 8 �9 deg, 

V = 15ro dT/dz, [V] = em/sec [rD] =cm, [dT/dz] = deg/cm. (9) 

The result obtained holds tree if the Reynolds number 

p ~ ' 0 F  _ . 
R = --q-- ~_ t. (10) 

In the case in question this is equivalent to the condition 

dT 
500ro 2 - - ~ - ~  t. (11) 

We shall now present some experimental  results. In view of the 

difficulties related with the presence of gravity, which causes con- 

vective motion of the liquid and rising of the bubbles, the experiment 

is only qual i tat ive in character. Into a horizontal glass tube 2.5 mm 

in diameter and f i l led with distil led water, a bubble of air about 

0.7 mm in diameter was introduced. Several mil l imeters  away, 

outside the tube, we placed a nicbxome spiral, by heating which 
we ~ea ted  a temperature gradient in the water. The motion of the 

bubble was registered by motion picture photography at a f i lm 

speed of 300 frames/sec.  
The results are shown in the figure. The bubble, ini t ia l ly  at rest, 

begins to move 5- 6 sec after the commencement of heating.  As 
may be seen in the photographs, the air bubble, expanding as a 
result of evaporation, moves in the direction of increasing tempera- 
t ~ e ,  Thus, the quali tat ive result of the experiment coincides with 

the conchision of the theory, 
The authors wish to thank M. A, Lavrent'ev for formulating the 

problem and giving constant attention to their work. 
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